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‡ I.  Introduction

This  document  provides  detailed  information  on  the  basic  theoretical  knowledge  required  to  understand  the
operational principles  of the Second  Harmonic Generation  Autocorrelator  used for  measuring the pulse length of
the infrared drive laser at the Neptune Laboratory.  This autocorrelator was originally assembled by Kari Sanders
and Sergei  Tochitsky  ca.  2000-2001.   Some information  about its  operation  may be found in Kari  Sanders'  mas-
ter's thesis.  In short, the autocorrelator operates by splitting the infrared (1064nm) pulse produced by the Neptune
regenerative  amplifier  and  grating  compressor  and  then  crossing  the  two  split  pulses  inside  of  a  nonlinear  KDP
crystal, via a Type I "ooe" interaction, to produce noncollinear second harmonic frequency upconversion to green
(532 nm).  The intensity of the green as a function of the delay between the two split pulses produces the autocorre-
lation  of  the  pulse,  which  can  be  used  to  extract  the  pulse  length  and  (to  some  extent)  the  time  structure  of  the
pulse.  The theory of autocorrelation will not be discussed in this document.

‡ II.  Basics of Nonlinear Optics

ü Maxwell Equations with Generalized Polarization

In their most general form, Maxwell's Equations read
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with the current and charge densities being connected by the continuity equation,
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We  may  separate  the  current  density  into  a  DC  component  J0  and  a  time-dependent  component  Jt  such  that
JHr, tL = J0 HrL + Jt Hr, tL.  We can then suppose that Jt  is the time derivative of some function , so that we write
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The second relation  follows  by  substitution  of  the first  into  (2)  and defining  r0 ª — ÿ J0 .   Then,  (1)  may be cast
into the form
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where we have defined a generalized displacement field:

(5) = E + 4 p 

In general,    is  a function  of both  E  and  B,  (i.e.   = @E, BD)  since  it  contains  the electric  and magnetic  dipole
responses  which are  both intimately  connected  to the fields.   If we consider the case  where there is no magnetic
material  present,  then it becomes a function only of E.   For sufficiently  weak electric  fields,  the functional @ED
can then be expanded in powers of the components of E:

(6) = ‚
n=1

¶
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 in component form read

(7)
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Here  Xè HnL  is  a  tensor  of  rank  n + 1  whose  components  represent  the  expansion  coefficients.   There  is  also  an
implied summation on repeated indices.  If E is a superposition of plane waves:

(8)EHr, tL = ‚
i

 EHiL ; where EHiL Hki , wi L = E
` HiL

 ‰ÂHki ÿr-wi  tL
then the Fourier transforms of (5) are

(9)

FH1L = XH1L : EH1L ;
FH2L = XH2L : EH1L  EH2L ;
FH3L = XH3L : EH1L  EH2L EH3L ;

...
where, XHnL  is the generalized susceptibility tensor of rank n + 1.  It is given explicitly by the Fourier transform of
the coefficients in (5):

(10)XHnL = ‡ Xè
HnL Hq - q ', t - t 'L ‰-Â @KÿHq-q'L-W ÿHt-t'LD  „3 n q ' „n t '

where for compactness we define the composite vectors

(11)
q = Hr, r, ..., rL ; q ' = Hr1 , r2 , ..., rn L;
t = Ht, t, ..., tL; t ' = Ht1 , t2 , ..., tL;
K = Hk1 , k2 , ..., kn L; W = Hw1 , w2 , ..., wn L
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ü Connection to Maxwell's Equations in Linear Media

We begin by taking the time-dependent part of the current and charge distributions  to be due to the usual electric
and  magnetic  dipole  contributions  P  and  M.   These  are  related  by  expanding  the  distributions  in  multipoles  to
dipole order, giving us

(12)J = J0 +
∂ P
ÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t + c — äM ; r = r0 - — ÿP

Hence, according to (2) the generalized polarization function  is given by
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and the generalized displacement field is thus
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Then, setting
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Equations (3) become

(16)

— ÿD = 4 p r0 ;

— äE = -
1
ÅÅÅÅÅc  

∂B
ÅÅÅÅÅÅÅÅÅÅÅ
∂ t ;

— ÿB = 0

— äH =
1
ÅÅÅÅÅ
c

 
∂D
ÅÅÅÅÅÅÅÅÅÅÅÅ
∂ t

+
4 p
ÅÅÅÅÅÅÅÅÅÅÅ
c
J0 ;

These are the usual form of Maxwell's  equations in macroscopic media.  By definition a linear medium is one in
which the derived fields are linear functions  of the components  of the primary fields, which we may write in the
form

(17)D = è ÿE ; H = m̀
-1

ÿ B
where è and m̀ are the dielectric and magnetic permeability tensors.  Now, via (14) and (16) we have that

(18)P = c ÿ E , where c ª
1

ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 Hè - IL
The matrix c is called the electric susceptibility tensor.  This equation has the form of equation (8).  We therefore
conclude that  the  linear susceptibility  tensor  c  is  equal  to the  lowest  order generalized  susceptibility  tensor  XH1L .
We can therefore rewrite (17) in the following equivalent form as expressed in the generalized notation

(19)P = XH1L : E =
ikjjjjjjj c11 c12 c13

c21 c22 c23

c31 c32 c33

y{zzzzzzz ÿ
ikjjjjjjjj Ex

Ey

Ez

y{zzzzzzzz
In the case where the medium is isotropic, the response is the same in all directions and the susceptibility tensor is
a diagonal matrix with c11 = c22 = c33 = c.  In this case the equations above simplify to the usual linear relations
for isotropic media:
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(20)D = e E ; P = c E ; e = 4 p c + 1

ü Second Order Phase Matching Conditions

To second order, the generalized polarization in component form reads

(21)i = Xij
H1L  Ej + Xijk

H2L  Ej  Ek

The first  order  contribution  is given  by (18).   Due to the  presence  of the second-order  interaction,  two waves of
different wavenumbers k1  and k2  can interact within the crystal to produce a third outgoing wave whose wavevec-
tor k3  is either their sum or difference.  These phenomena we call respectively sum phase matching  and difference
phase matching:

(22)k3 = 9 k1 + k2 ; sum phase matching
k2 - k1 ; difference phase matching

By  additionally  requiring  that  the  output  frequency  be  either  twice  the  input  frequencies  or  their  difference,  we
produce  the  following  subsets  of  the  two  conditions  above,  called  respectively  second  harmonic  generation  and
difference frequency generation:

(23)9 w3 = 2 w1 = 2 w2 fl 2 n3  k
`

3 = n1  k
`

1 + n2  k
`

2 ; SHG

w3 = w2 - w1 fl Hw2 - w1 L n3  k
`

3 = n2  w2  k
`

2 - n1  w1  k
`

1 ; DFG

After obtaining expressions for ni  for the material in question, these matching conditions may be applied to solve
for  the  relative  intersection  angle  (called  the phase  matching  angle)  of  the  incident  waves  with  the  optical  axis,
which will produce the desired type of output.

‡ III.  Nonlinear Optics in Uniaxial Crystals

ü The Indices of Refraction

In a uniaxial crystal, there is a special direction called the optical axis, which we will take to be z̀.  The optical axis
and the wave-vector  k  define  a plane called the principal  plane.   Waves polarized  perpendicular  to the principal
plane  are  called  ordinary  waves,  while  those  whose  polarization  lies  within  the  plane  are  called  extraordinary
waves.   The  indices  of  refraction  Ne  and  No  are  different  for  these  two  polarizations.   They  may  be  written
[Dmitriev, Handbook of Nonlinear Optical Crystals, p. 7]

(24)
No = no = constant;

Ne HqL = no  9 H1 + tan2  qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Hno êne L2  tan2  q

=1ê2
where ne = Ne Hq = p ê 2L and q is the angle between the optical axis and the direction of propagation:

(25)z̀ ÿ k
`

= cos q

The relative magnitudes of no  and ne  define two different classes of uniaxial crystals:

(26)
ne < no '' negative crystal ''
ne > no '' positive crystal ''
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ü The Collinear Phase Matching Conditions

Based  upon  our  above  classification  of  the  propagating  waves  as  ordinary  or  extraordinary,  we  can  divide  the
possible cases of second order 3-wave interactions into two classes:

(27)
Type I : both input waves are ordinary or extraordinary
Type II : input waves have orthogonal polarization

Among these two groups we have respectively the following possibilities:

(28)
Type I SHG : eeo, ooe
Type II SHG : oee, oeo

where  "eeo"  for  example  means  that  the  input  waves  are  extraordinary  and  the  output  wave  is  ordinary.   The
designations of (25) further subdivide Type II according to whether the crystal is positive or negative: 

(29)

Type I Type II
Output

------
o :
e :

Positive Negative
----------- ----------

eeo -
- ooe

Positive Negative
---------- ----------

eoo oeo
eoe oee

Applying the phase matching conditions with the results of the previous section  we obtain the following expres-
sions for the collinear matching angle tan2  q for each of the cases represented in the table above:

(30)

Type I Type II
Output

------
o :
e :

Positive Negative
------------ -----------H1 - UL ê HU - SL -

- H1 - UL ê HW - 1L
Positive Negative

----------- -----------H1 - TL ê HT - ZL H1 - V L ê HV - Y LH1 - UL ê HW - RL H1 - UL ê HW - QL
where

(31)

U = HA + BL2 êC2 ; W = HA + BL2 êF2 ; R = HA + BL2 ê HD + BL2 ;
Q = HA + BL2 ê HA + EL2 ; S = HA + BL2 ê HD + EL2 ; V = B2 ê HC - AL2 ;
Y = B2 êE2 ; T = A2 ê HC - BL2 ; Z = A2 êD2 ;
A = no1 ê l1 ; B = no2 êl2 ; C = no3 êl3 ;
D = ne1 ê l1 ; E = ne2 êl2 ; F = ne3 ê l3 ;

Note  that  for  Type  I  interactions,  "eeo"  interactions  occur  only  in  Positive  crystals  and  "ooe"  interactions  occur
only  in  Negative  crystals.   This  is  because  otherwise  the  relative  signs  of  no  and  ne  lead  to  phase-matching
equations which have no real-valued solutions.

ü Derivation of the Collinear "ooe" Phase Matching Angle

Let us calculate the noncollinear phase matching relationship for two ordinary waves incident with frequencies w1
and w2   at a crossing angle 2a.  We take the pricipal plane to be the x-z plane with the optical axis along z.  Then,
we can write

(32)k1 = No Hw1 L w1ÅÅÅÅÅÅÅÅÅÅc ; k2 = No Hw2 L w2ÅÅÅÅÅÅÅÅÅÅc ; k3 = Ne Hw3 , qL w3ÅÅÅÅÅÅÅÅÅÅc
where No  and Ne  are given by (23).  Then, requiring k3 = k1 + k2  we obtain the relation
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(33)No Hw1 L w1 + No Hw2 L w2 = Ne Hw3 , qL w3

or

(34)no1  w1 + no2  w2 = no3  w3  9 H1 + tan2  qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Hno3 êne3 L2  tan2  q

=1ê2
Note  that  the  wavelength  inside  the  crystal  and  the  wavelength  outside  the  crystal  are  different.   Namely,
lext = n lint .   Since  is  more  convenient  to  refer  to  the  external  wavelength,  we  will  denote  wi = 2 p c êli  where
i = 1, 2, 3.  Then, (34) reads

(35)no1
ÅÅÅÅÅÅÅÅÅÅÅ
l1

+
no2
ÅÅÅÅÅÅÅÅÅÅÅ
l2

=
no3
ÅÅÅÅÅÅÅÅÅÅÅ
l3

 9 H1 + tan2  qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + Hno3 êne3 L2  tan2  q

=1ê2
or in terms of the quantities defined by (31) this reads

(36)A + B = C 9 H1 + tan2  qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + HC êFL2  tan2  q

=1ê2
Solving this for tan2  q we obtain the expected result from table (30).

(37)tan2  q =
1 - HA + BL2 êC2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHA + BL2 êF2 - 1

=
1 - U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
W - 1

‡ IV.  The Neptune SHG Autocorrelator

ü Introduction

The  autocorrelator  for  the  Neptune  Laboratory  is  a  homemade  device  constructed  originally  for  K.  Sander's  EE
master's thesis.   The operating  principle  is as follows.   The amplified  IR laser  pulse (1.064 mm) from the Regen,
after  compression  by the gratings,  is split into two beams and then recombined in a KDP crystal  with a crossing
angle y external to the crystal that produces an internal crossing angle a that corresponds  to the proper matching
angle  for  second-harmonic  generation.   A  moveable  delay  on  one  leg  permits  the  two  pulses  to  be  overlapped
within the crystal.  A cartoon diagram of the setup is shown below.
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Because  the  interaction  occurs  only  over  the  transverse  distance  corresponding  to  the  intersection  region  of  the
two pulses in space, the width of the resultant green (532 nm) SHG pulse is related to the pulse length of the input
beams.  By observing the width of the SHG light with a CCD camera, one can then deduce the pulse length of the
laser pulse in a single shot.  This requires, however, that the input IR pulse be made transversely very large.  If the
input pulse is small then the device can still be operated as a multishot device.  The autocorrelation trace can then
be produced by measuring 

ü KDP Crystals

The name of  the nonlinear crystal  KDP is short  for  Potassium Dihydrogen  Phosphate  or KH2  PO4.  It  is a nega-
tive, uniaxial crystal.  It can support second harmonic interactions of type "ooe" and third harmonic interactions of
type  "eoe".   Note  that  Type  I  "eeo"  interactions  are  forbidden  for  negative  crystals.   Consequently,  for  SHG  in
KDP, the crossed  input beams must  have  ordinary  polarizations.   The wavelength  dependences  of the indices of
refraction for KDP at 25˚C are given by [Dmitriev, Handbook of Nonlinear Optical Crystals, p. 54]

(38)
no

2 HlL = 2.259276 +
0.01008956

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l2 - 0.012942625 +

13.00522 l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2 - 400 ;

ne
2 HlL = 2.132668 +

0.008637494
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
l2 - 0.012281043 +

3.2279924 l2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

l2 - 400 ;

where l is in mm.  So, for SHG with an input wavelength of l = 1.064 mm we obtain the following values:

(39)

Symbol lHmmL Eq. H38L
------ ------ ------

no,2 w 0.532 1.5124
ne,2 w 0.532 1.4705
no,w 1.064 1.4938
ne,w 1.064 1.4599
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ü The Noncollinear "ooe" Phase Matching Angle for SHG

Let  us  calculate  the  noncollinear  phase  matching  relationship  for  SHG  with  two  ordinary  waves  incident  with
frequency w  at an angle 2a.  We take the pricipal plane to be the x-z plane with the optical axis along z.  Then, we
can write

(40)k1 = No HwL w
ÅÅÅÅÅÅÅc  k

`
1 ; k2 = No HwL w

ÅÅÅÅÅÅÅc  k
`

2 ; k3 = Ne H2 w, qL 2 w
ÅÅÅÅÅÅÅÅÅÅÅÅc  k

`
3

where No  and Ne  are given by (23) and

(41)
k
`

1 = cos Hq + aL z̀ + sin Hq + aL x̀ ;
k
`

2 = cos Hq - aL z̀ + sin Hq - aL x̀ ;
k
`

3 = cos q z̀ + sin q x̀ ;
Then, requiring k3 = k1 + k2  we obtain the relation

(42)cos a =
no,2 wÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅno,w

 9 H1 + tan2  qL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + @no,2 w êne,2 w D2  tan2  q

=1ê2
This relationship tells us that if we wish to generate an output wave that propagates at an angle q from the optical
axis,  then  the  two  input  waves  must  propagate  at  the  angles  q ± a  where  a  is  given  by  (42).   The  indices  of
refraction are given in table (39).  With these values we obtain the following plot of cos a vs. q:

0 p
ÅÅÅÅ4

p
ÅÅÅÅ2

3 p
ÅÅÅÅÅÅÅÅ4

p

qHradL
0.85
0.9
0.95

1
1.05
1.1

cosHaL

Note  that  real-valued  solutions  for  a  occur  only  within  the  region  below  the  dotted  line.   Plotting  the  inverse
cosine of the above graph within this region we obtain the following solutions for a:

25 50 75 100 125 150 175
qHdegL2

4
6
8
10
12
14

aHdegL

The peak  occurs  at  q = 90 ˚.   We  find  from (40)  that  at  this  matching  angle,  the  intersection  angle  of  the  initial
wavevectors is given by
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(43)a = arccos 
ne,2 wÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅno,w

= 10.1 ˚ @for 90 ˚ phase - matchingD
The values of q corresponding to a = 0 represent the collinear phase-matching solutions:

(44)q = arctan 
ne,2 wÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅno,2 w

 9 no,w
2 - no,2 w

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅne,2 w

2 - no,w 2 =1ê2
= 41.2 ˚, 138.8 ˚ @collinear phase - matchingD

The smaller  value  matches the prediction  of equation (37).   The larger  value simply corresponds  to a reversal  of
the direction of propagation through the crystal.  Note that in [K. Sanders, Up-Conversion of THz Amplitude-Modu-
lated CO2  Laser Pulses Using Nonlinear Crystals (PhD. Thesis), p. 52], it says that the measured bisected internal
intersection angle for two incident 1.064 mm pulses was a=7.6˚.  This value of a corresponds on the plot above to
q =58.18˚.  It was determined empirically and theoretically (see below) that this angle quoted in the Sander's thesis
is incorrect.  The correct crossing angle is calculated in the following section.

ü Crossing Angles for the Neptune SSA

The apparatus for the Neptune SSA is shown in the following diagram:

The label on the KDP crystal indicates  that it is an INRAD KDP "D" crystal.  The "D" designation, according to
the INRAD website, indicates the cut.  For type D this is indicated as corresponding to an optical axis at an angle
of 46.6˚ from the geometrical longitudinal  axis of the crystal in the horizontal plane.  The collinear phase match-
ing angle was observed experimentally for an incidence angle of 11.3˚ with a 1.064mm wavelength input beam.  In
order  to  get  collinear  green  at  532nm  the  crystal  had  to  be  rotated  by  3.94˚.   Using  equation  (44)  then  gives  a
crystal  cut  orientation  of  46.1˚,  when  the  refraction  of  the  beam  inside  the  crystal  is  taken  into  account.   This
arrangement is shown in the following figure:
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A blowup  of the crystal  with the measured  orientation of the optical  axis and the k-vector  direction for  collinear
matching is shown below.

Our goal now is to calculate the correct orientation of the KDP apparatus to get noncollinear phase matching.  For
the sake of simplicity, we would like the cut angle to coincide with the angle q of the exiting wave-vector, so that
the SHG beam will exit at right angles to the crystal surface and we therefore will not have to rotate the crystal at
all.   We  therefore  set  q = qcut = 46.6 ˚.   At  this  value,  equation  (42)  predicts  that  a = 4.16 ˚.   In  order  to  get  an
internal crossing angle of this magnitude, we therefore need the input beams to have an external bisected crossing
angle of fe = 6.2 ˚.  In summary, the correct angles for the KDP in the Neptune SSA are as follows:

Angle Value Description
----- ----- --------------

a 4.16 ˚ external crossing HbisectedL
fe 6.2 ˚ internal crossing HbisectedL
q 46.6 ˚ crystal cut angle

ü Fitting Function for the Autocorrelation Curve:  Square Pulse

In  general  one  is  interested  in  extracting  from  the  intensity  interferogram  of  an  SHG  autocorrelation  scan  a
measure  of the laser  pulse length.   The relationship  between the FWHM of the interferogram  and the FWHM of
the incident  laser  pulse  depends  upon  the shape  of  the pulse.   By assuming  a Lorentzian pulse,  for example,  the
relationship is a factor of two difference, with the laser pulse being shorter than the interferogram by a factor of 2.
For the drive laser at Neptune we wish to obtain a realistic model for the shape of the laser pulse and derive from
this the expected relationship between the FWHM of the pulse and the FWHM of the autocorrelation. 
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Let us take the laser pulse shape to be approximated by a square pulse with rounded edges.  This type of pulse can
be represented by a function of the following form:

(45)IHtL = I0  
‰-aHt-Dtê2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + ‰-aHx-Dtê2LêT  

‰aHt+Dtê2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + ‰aHx+Dtê2L

where  Dt  is  the  FWHM  of  the  pulse  and  a = Dt ê T  where  T  is  the  falloff  time  of  the  round  edges.   In  the  limit
T Ø 0, a Ø ¶ and the plot looks like a perfect square pulse of width Dt.  We plot below and example, for the case
Dt = 10 ps with a falloff time of  T = 2 ps or a = 5 ps-1 :

-7.5 -5 -2.5 0 2.5 5 7.5 10
tHpsL0.2

0.4

0.6

0.8

1

1.2

IêI0

The autocorrelation function of this we will call F(t) which we define by

(46)FHtL = ‡
-¶

¶

IHtL IHt - tL „ t

Equation (45) may be rewritten as

(47)IHtL = I0  ‰-m Dt  
‰-mHt-Dtê2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1 + ‰-mHx-Dtê2LêT  
‰mHt+Dtê2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1 + ‰mHx+Dtê2L
where  m = -a.   Then,  m  is  inherently  negative  and  real.   If  one  plots  (47)  with  m = -5 ps-1  and  Dt = 10 ps  the
result exactly resembles the plot above.  Inserting (47) into (46) and evaluating the integral, we obtain

(48)FHtL = I0  ‰-2 m Dt  
‰m H2 Dt+tL JH1 + ‰Dt m L H-1 + ‰m t L LogA‰ Dt m

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 E + H‰m t - ‰Dt m LLogA‰m J Dt
ÅÅÅÅÅÅÅÅÅÅ2 +tN E + H‰m HDt+tL - 1L JLogA1 + ‰m J Dt

ÅÅÅÅÅÅÅÅÅÅ2 -tN E - LogA1 + ‰m Jt-
Dt
ÅÅÅÅÅÅÅÅÅÅ2 N ENN

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 - ‰Dt m L H‰Dt m - ‰m t L H‰m t - 1L H‰m HDt+tL - 1L m

Plotting this function for the example values used above, we obtain
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Evaluating  FHtL  at  t = 0 gives  an  indeterminate  result  since  both  the numerator  and  denominator  vanish.   How-
ever, evaluating by integrating (46) with t = 0 we obtain

(49)Fmax = ‡
-¶

¶

IHtL2  „ t = 2 I0  
‰Dt m + H1 + ‰Dt m L LogA‰- Dt mÅÅÅÅÅÅÅÅÅÅÅ2 E - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1 + ‰Dt m L3 m

Evaluating this for the plot above, we obtain Fmax ê I0 = 9.6 .  Now we wish to find an expression  for the FWHM
of  the  function  F(t).   This  is  done  by  solving  the  equation  FHtL = Fmax ê2 for  t.   However,  this  equation  is  too
complicated to solve algebraically, so it must be done numerically.  If the falloff at the edges of the square pulse is
fairly short Ha Ø ¶L, we can see that the result will be that the full width half-max of the autocorrelation curve will
be approximately FWHM > Dt.

ü Fitting Function for the Autocorrelation Curve:  Square Pulse with Spikes

As  the  exact  pulse  shape  of  a  laser  pulse  cannot  be  completely  known  from examination  of  the  autocorrelation
traces, various hypotheses exist about what type of pulse shape should be fitted to the data.  One such hypothesis
is that  if  one  assumes  an undercompressed  final  pulse  with  a  remnant  linear  chirp,  then there  should  be a  direct
relationship  between  the  shape  of  the  pulse  and  the  shape  of  its  power  spectrum in  the  frequency  domain.   The
power spectrum of the beam at the Neptune laboratory has a shape characterized by a square pulse with "spikes"
on the edges, and some of the autocorrelation traces which have been observed are consistent with a pulse having
this sort of time structure.  Below are a variety of pulse intensity profiles IHtL of this type and the resulting autocor-
relation functions AHtL which they would produce.
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The following plot  shows an example of a trial  pulse  shape which  fits fairly closely to the observed  autocorrela-
tion data.  The autocorrelation function in the second plot (solid curve) is superimposed with the actual data (dots).
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ü Fitting Function for the Autocorrelation Curve:  Exponential Pulse

As  of  this  writing,  data  taken  at  the  Neptune  laboratory  show  that  when  the  cathode  drive  laser  is  fully  com-
pressed,  its  autocorrelation  function  resembles  an  exponential  mirrored  about  the  vertical  axis.   Below  is  an
example of autocorrelation data which are superimposed with an exponential fit function.
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The fit function in this case has the form

(50)AHtL = c + a ‰b †t§ ;
This  sort  of  autocorrelation  function  can  be  produced  by  a  time  profile  IHtL  which  looks  like  an  exponential
function  with a sharp cutoff  (see the third  example in the figure  below).  The following are examples  of various
asymmetric exponentials (on the left) and the autocorrelation functions AHtL (on the right) which they produce.
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