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Ultrafast pulses on the femtosecond time scale allow fundamental pro-

cesses, such as atomic transitions, to be measured. To investigate the

formation of optical pulses, an argon ion laser was used to pump a

titanium-doped sapphire laser. The mode-locked output of this laser

was measured with a spectrometer and an autocorrelator to find a fre-

quency pulse width of σω = 86 ± 3 rad/ps and a temporal pulse width

of σt = 14 ± 1 fs. The Heisenberg uncertainty principle demands that

σωσt ≥ 1, where the minimum uncertainty corresponds to a transform-

limited pulse; for this investigation, σωσt = 1.2 ± 0.1, so our pulse was

nearly transform-limited. This conclusion is supported by overlaying

the measured autocorrelation function with one calculated from the fre-

quency spectrum, assuming a transform-limited Gaussian pulse; the two

curves are nearly identical.

Introduction

Ultrafast optical pulses occur on a picosecond or shorter time scale, and pulses as

short as six femtoseconds (6×1015 s) have been produced [1]. Because the energy in

the amplifying material is released in such short pulses, each pulse has a very high

power output. Peak powers of up to one terawatt (1012 W) have been achieved [1].

High energy pulses on the fs time scale allow many fundamental processes to

be measured, such as the transfer of energetic excitations along the DNA molecule,

the supersonic collapse of sonoluminescing bubbles, and the fundamental scattering

processes in semiconductors [2]. Ultrafast pulses also have various technological

applications, from microsurgery on the eye to ultrafast opto-electronics [1].
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In order to generate ultrafast optical pulses, we used a titanium sapphire laser,

since its large number of frequency modes allow it to produce a pulse on a very

short time scale. We measured the frequency width of the pulse using a simple

spectrometer, and we measured the temporal pulse width using an autocorrelator.

The autocorrelator split the beam in two and inserted a separation τ between the

two beams before recombining them in a crystal that displays simple harmonic

generation (SHG), which means it can emit light at twice the frequency of the

input.

By measuring the pulse width in both frequency and time, we can compare the

results to the Heisenberg uncertainty principle, which limits the minimum uncer-

tainty in these variables.

Theory

The energy-time uncertainty principle is given by

∆E∆t ≥ ~
2
, (1)

where ∆E is the standard deviation in the energy and ∆t represents the amount

of time it takes the expectation value of some operator to change by one standard

deviation [3]. Since for photons, E = ~ω, Eq. (1) can be written as

∆ω∆t ≥ ~
2
. (2)

We thus see that a smaller ∆t demands a larger ∆ω, or frequency range. This can

be more rigorously shown using Fourier decomposition, resulting in the description

“transform limited” for a pulse with the minimum temporal width allowed by Eq. (1)

[2].

In order to generate ultrafast pulses, it is thus necessary to use a laser with

a large gain bandwidth and a large number of longitudinal modes. This is why
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the titanium-doped sapphire (Ti:Al2O3) laser is used: it has a gain bandwidth of

about 300 nm and over 106 modes in a typical laser cavity [2]. An Argon laser, for

comparison, only has about 12 modes [5], and a HeNe laser has only a few [2].

By bumping a component in the laser, such as the prism, we are able to initiate

a spike. When that spike passes through the gain medium it takes out a lot of

photons, depleting the gain until the spike comes back through the cavity. This

gain-depletion is not sufficient to maintain mode-locking, but it is aided by the Kerr

lens effect. This effect occurs when an intense beam of light increases the refractive

index in the center of the beam, causing the beam to focus to a smaller point so that

more of the pulse gets into the high-gain region. This allows the laser to become

mode-locked, which means there is a fixed phase relationship between the different

allowed modes.

Now consider the form of the wave packet output of a mode-locked laser. Since

the “minimum uncertainty” wave packet in position-momentum space is a Gaussian,

we consider this form when examining a temporal envelope [4]. We can write the

field of our pulse as a function of time as

E(t) = E0 exp

(
− t2

2σ2
t

)
exp (−iω0t) . (3)

The full width at half maximum (FWHM) of the intensity of this field is given by

[2]

tFWHM = 2
√

ln 2σt. (4)

The Fourier transform of a Gaussian pulse is also Gaussian,

E(ω) = E0 exp

(
− [ω − ω2]

2

2σ2
ω

)
, (5)

with a FWHM given by

ωFWHM = 2
√

ln 2σω. (6)
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If we let ∆ω =
√
〈ω2〉 − 〈ω〉2, where 〈ω2〉 = ω2

0 + σ2
ω/2 and 〈ω〉2 = ω0, we find that

∆ω = σω/
√

2. The same equations hold for ∆t, and so Eq. (2) becomes [2]

∆ω∆t =
σωσt

2
≥ 1

2
, (7)

which means that

σωσt ≥ 1. (8)

Eq. (8) becomes an equality for a transform-limited pulse.

To compare our results with those predicted by the uncertainty principle, we

wanted to measure the ultrafast pulse width in both frequency and time. The

frequency width could be measured using a spectrometer, but electronics are too

slow to measure something on the femtosecond time scale. To find ∆t it was thus

necessary to use an optical method. Simply measuring the interference can be

problematic, since it is difficult to tell whether an interference pattern is from a

dispersion-free pulse or not. Instead of using an interferometer to measure the first-

order field correlation function, we used an autocorrelator to measure the second-

order intensity correlation function. Even if pulses are dispersed (and thus not

Fourier transform limited), measuring the intensity autocorrelation function still

gives the proper signal [5].

In order to measure this function, we use an optical effect known as second har-

monic generation (SHG), which utilizes the fact that there is some probability that

an atom will absorb two photons of frequency ω and emit one photon of frequency

2ω. This can only be done with a non-centrosymmetric material, since if changing

the direction of the electric field only changes the direction of the polarization, then

the even powers of E in the expansion of P must go to zero, and it is the first of these

even powers that results in SHG. The autocorrelator splits the field into two and

delays one of the pulses by a time interval τ before recombining them and sending
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them through the crystal. We then consider the second term in the expansion of

the polarization inside the crystal,

P (t) = χ(1)E(t) + χ(2)E2(t) + · · · , (9)

where χ(i) are the nonlinear optical susceptibility tensors [2]. By integrating the

time averaged intensity, which is proportional to the square of the dipole moment,

it can be shown that the autocorrelation signal is given by〈
I2ω0(τ)

〉
∝
[
1 + exp

(
− τ 2

2σ2
t

)
[2 + cos (2ω0τ)] + 4 exp

(
−3τ 2

8σ2
t

)
cos(ω0τ)

]
. (10)

From Eq. (10) it can be shown [2] that

σt =
tFWHM−AC

2
√

2
, (11)

where tFWHM−AC is the FWHM of the autocorrelation trace.

Procedure

A 4.5 W argon ion laser was used to pump a Ti:Al2O3 laser, which contained prisms

to correct for the angular dispersion of the beam. When the Ti:Al2O3 laser was

producing a stable mode-locked output, its spectrum and autocorrelation traces

were measured. The spectrum was could be directly measured by sending the beam

into a spectrometer whose output was sent to a digital scope and was compared

to a spectrum analyzer. To measure the autocorrelation function, the beam was

first sent through another pair of prisms to correct for dispersion and then to the

autocorrelator. The beam was split using a 50/50 beam splitter, retroreflected off

aluminum mirror corner cubes, and recombined with a different beam splitter. The

two beam splitters ensured that each beam undergoes the same dispersion before

recombining. A focusing mirror then directed the beam through a SHG crystal,

which was then focused again through filters to remove the IR light and into a
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photomultiplier tube (PMT). The output current of the PMT was converted to a

voltage and read on a digital oscilloscope.

Results and Discussion

Figure (1) shows the output of the spectrometer used to measure the frequency

width of the wave packet.

ωFWHM =
2πc

λ1

− 2πc

λ2

, (12)

where λ1 = 790.2± 1.0 nm and λ2 = 840.8± 1.0 nm are the wavelengths at half the

maximum height. This gives ωFWHM = 143 ± 6 rad/ps. Equation (6) can then be

used to determine that σω = 86± 3 rad/ps.

The second-order intensity correlation function, g(2), is shown in Figure (2).

Knowing that each pair of fringes is separated by one period of oscillation, or λ0/c =

2.72 ± 0.02 fs, and counting the number of data points between fringes, it was

determined that each data point corresponded to 0.041± 0.002 fs. This allowed the

horizontal axis to be rescaled in fs for this graph. Since the FWHM was measured

to be 950± 20 points, our calibration gives tFWHM−AC = 39± 2 fs. Using Equation

(11), σt = 14± 1 fs.

Multiplying σω and σt to compare with Equation (8) gives σωσt = 1.2± 0.1.

Using Eq. (10), the autocorrelation function can be calculated from the spectrum

plot in Figure (1), assuming a transform-limited Gaussian pulse. Using our data, this

curve was generated by a program written by C. H. Grossman and T. D. Donnelly [2]

and is shown as the solid line in Figure (3). The circles in Figure (3) are the measured

autocorrelation function from Figure (2). The two curves are nearly identical except

at the edges, which means that our pulse was nearly transform-limited.
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Conclusion

To explore the fundamentals of ultrafast pulse formation, pulses on the femtosecond

time scale were produced by mode-locking a Ti:Al2O3 laser, which was pumped by

an Ar ion laser. Using a spectrometer and a spectrum analyzer, the frequency width

of the signal was measured to be σω = 86±3 rad/ps. By aligning an autocorrelator,

the temporal pulse width was determined to be σt = 14± 1 fs. The product of the

laser pulse width in the frequency and time domains is constrained by the Heisenberg

uncertainty principle, which can be expressed as σωσt ≥ 1; multiplying our results

gives σωσt = 1.2± 0.1. Assuming a transform-limited Gaussian pulse, a theoretical

second-order intensity autocorrelation function was calculated from the frequency

spectrum and was seen to overlap nearly exactly with the measured autocorrelation

function. From this graph and from our comparison of the pulse width with the

Heisenberg uncertainty principle, we conclude that our pulse was nearly transform-

limited.
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Figure 1: The curve is the spectrometer output, and the spikes from

the spectrum analyzer provide a scale; the largest spike corresponds

to 770 nm, and the other big spikes mark off 10 nm intervals. Using

this scale, the wavelengths at half the maximum were determined to

be 790.2±1.0 nm and 840.8±1.0 nm, resulting in σω = 86±3 rad/ps.

The center wavelength is λ0 = 815.5 ± 3.0 nm. In this graph, the

horizontal axis is labeled by data point number and can be ignored.
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Figure 2: Second-order intensity autocorrelation signal from the

autocorrelator. The horizontal scale in fs was calculated by finding

the number of data points between fringes and knowing that each

fringe separation is λ0/c. The FWHM of this autocorrelation signal

is tFWHM−AC = 39± 2 fs, resulting in σt = 14± 1fs.
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Figure 3: The solid line is the autocorrelation function calcu-

lated from the spectrum plot, assuming a transform-limited Gaussian

pulse, and the circles are the measured autocorrelation function from

Figure (2).
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