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Abstract. We propose and demonstrate a widely tunable optical filter,
realized by angle tuning a volume holographic grating. The volume ho-
lographic grating selectively drops a narrow portion of the signal band-
width into a fiber while passing through the rest of the signals. The dem-
onstrated 1510- to 1590-nm tuning range covers the entire erbium-
doped fiber amplifier (EDFA) C band, with small bandwidth variation and
low insertion loss (,1 dB). Group delay, polarization-dependent loss,
and polarization mode dispersion are measured and investigated for op-
timizing the filter characteristics. © 2004 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.1773775]
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1 Introduction

Wavelength-division multiplexing~WDM! has extended fi-
ber optics from simple point-to-point links to flexible larg
capacity networks capable of dynamic wavelength rout
for efficient capacity management. Such dynamic opti
networks require reconfigurable optical components to c
trol the optical channels for optimum network pe
formance.1 One key component in WDM networks is th
tunable optical filter, which provides the flexibility in wave
length control and routing. Its essential requirements
clude wide tuning range, low insertion loss, low chroma
dispersion, low polarization-dependent loss~PDL!, low po-
larization mode dispersion~PMD!, high stopband rejection
fast tuning speed, small size, and low cost.2

Available single-passband tunable optical filter tec
niques include fiber Bragg gratings~FBGs!,3 thin film fil-
ters~TFTs!,4 Fabry-Perot filters~FPF!,5 arrayed waveguide
gratings~AWGs!,6 acousto-optic tunable filters~AOTFs!,7

and microelectro-mechanically-actuated tunable filte8

The FBG gives the best tunable optical filter because o
sharp spectral filtering characteristics, low insertion lo
and chromatic dispersion compensation capability w
proper chirping and apodization along the grating. Ho
ever, the FBG is difficult to be tuned for wide range b
either thermal tuning or mechanical stress.

Volume holographic gratings~VHGs! are in many ways
similar to FBGs except that the recording medium for t
grating is not a single-mode fiber but a volume mediu
Consequently, the incident and diffracted light are not c
fined to the modes of the fiber, but can be assigned to
mode that can propagate in the volume of the material. T
opens up a new set of possibilities for the design of use
devices, and allows additional flexibility such as removal
the circulator, which is essential for FBGs. VHGs ha
been previously used as optical filters9 and de-
multiplexers.10,11 We investigate and demonstrate a VHG
Opt. Eng. 43(9) 2017–2021 (September 2004) 0091-3286/2004/$15.00
based continuously tunable filter. It achieves a wide tun
range~1510 to 1590 nm! and low insertion loss~,1 dB!.

2 Volume Holographic Grating Angle Tuning

Figure 1 shows a schematic representation of the cont
ously angle-tunable volume holographic filter. The Bra
wavelength of a holographic grating is determined by:12

lb52nL cosu, ~1!

wherelb is the Bragg phase matching wavelength,n is the
refractive index of the material,L is the holographic grat-
ing period, andu is the angle of incidence inside the holo
graphic material. By changing the incident angleu, the
Bragg wavelength can be tuned continuously from 2nL
down to 2LA(n221). For practical application, the tunin
range can easily cover the entire C band, limited mainly
the higher insertion loss at larger angleu, which is caused
by: 1. the sharp angle selectivity of the VHG at a lar
angleu compared with the angle deviation of a finite ape
ture Gaussian beam, and 2. the coupling efficiency betw
a large aperture Gaussian beam and fiber due to the ge
etry limits. The critical requirement to make this idea
practical tunable filter device is to collect the drop sign
into a fiber during the angle tuning without an expens
tracking mechanism or feedback control system. This
achieved with a self-reflector architecture that recombi
the reflective holographic grating with a wideband infrar
~IR! mirror, as shown in Fig. 1.

A retroreflector consists of two mirrors with a fixe
angle a between the mirror surfaces. And the angle b
tween the input and reflected signal becomesp22a. For a
normal retroreflector, as shown in Fig. 1~a!, the IR mirrors
are arranged as orthogonal to each other witha5p/2, and
the reflected signal beam is always inverse to the in
direction and fixed spatially when rotating the mirror stru
2017© 2004 Society of Photo-Optical Instrumentation Engineers
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ture around the crossing point of the mirror surfaces. T
also applies to the structure in Fig. 1~b!, where one mirror
is replaced by a VHG. At the Bragg wavelength, this VH
works as a reflective mirror with an effective depth into t
material. When rotating the mirror/grating structure arou
the crossing point of the mirror and grating surfaces at
effective reflection depth, the drop signal beam is fixed s
tially while the wavelength is tuned by the angleu.

With the addition of a temperature sensor and suita
control system, the device can be made athermal13 by com-
pensating the angleu to offset temperature-induced varia
tions of the grating periodL in response to ambient tem
perature variation.

3 Insertion Loss, Beam Size, and Experimental
Demonstration

Figure 2 shows an experimental demonstration of conti
ous tuning of such a device across the C band. The tun
range is only determined by the geometry limit of the d
vice and the filter performance. The tunable device cons
of two parallel fiber collimators with beam width 500mm
as input and drop, an IR mirror, and a holographic grat
of fixed anglea;90 deg, as shown in Fig. 1. A tunab
laser is coupled into the input fiber collimator and the d
fracted signal is collected into the drop fiber collimator. T
holographic grating is recorded inside a photosensi
glass with period 535 nm, which corresponds to a Bra
wavelength 1591.5 nm at normal incident angle. The an
u is tuned between 11 and 17 deg to cover the C band 1
to 1528 nm, as shown in Fig. 2~a!.

Figure 2~b! shows all the overlapped filter shapes ov
the whole tuning range and they are similar with limit
deformation. However, the insertion loss~IL ! increases
from 2.2 to 4 dB while tuning across the C band in F
2~a!. This increase of IL is due to the finite aperture of t
input signal. For an input Gaussian beam with a finite be
size w, there is a spatial angle deviation;l/w from a
perfect plane wave. However, the angle selectivity of a
flective gratingDu5l/(2n sinuL) improves as the tuning
incident angleu increases, whereL is the effective length of

Fig. 1 (a) A normal retroreflector with two perpendicular mirrors.
The reflected beam is fixed when the retroreflector is rotated around
the mirror joint. (b) Replacing one mirror by a VHG. The continu-
ously tunable wavelength of this optical filter is determined by the
VHG incident angle u.
2018 Optical Engineering, Vol. 43 No. 9, September 2004
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the grating. WhenDu is comparable with or smaller tha
the Gaussian angular deviation, part of the Gaussian b
will not be Bragg matched at the same time as the cen
components.

By simulating the Bragg diffraction of different Gaus
ian beam sizes from the holographic grating, Fig. 3 sho
that the IL of a 500-mm-diam input beam increases 1.5 d
along the tuning angle 10 to 18 deg. To decrease the
variation ,0.5 dB over the C band, the collimated bea
size needs to be.1.5 mm in diam. Figure 4 shows th
experimental tuning filters with similar devices in Fig.
with collimators of 2.5-mm beam size. The tuning ran
covers 1510 to 1590 nm, and the IL variation is smal
than 0.7 dB, as shown in Fig. 4~b!. The larger than expecte
IL variation is random instead of systematically goin
down as the tuning angle increases, which could be cont
uted from other measurement noise such as the stabilit
the angular tuning and the extreme angular coupling se
tivity of the large beam collimator. The nonsymmetric filt
shape, as shown in Fig. 4~b!, is possibly caused by the
nonuniform refractive index along the grating due to t

Fig. 2 (a) Continuous tuning filters over C-band with fiber collima-
tors of 0.5-mm-diam beam size; (b) overlap of all the filter shapes
with limited variation over the whole tuning range.
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nonuniform apodized exposure in the holographic mate
in our experiments, similar to the induced refractive ind
variation in FBG. Figure 5 shows the filter bandwidth me
sured at both20.5 and23 dB from the maximum as the

Fig. 3 Theoretical simulation on the insertion loss over the tuning
angle for various Gaussian beam diameters.

Fig. 4 (a) Continuous tuning filters over 1510 to 1590 nm with fiber
collimators of 2.5-mm-diam beam size; (b) overlap of all the filter
shapes with IL ,1 dB and limited variation over the whole tuning
range.
angle tuning across the C band. Less than 10% variatio
bandwidth is seen over the entire tuning range.

4 Group Delay, PDL, PMD Measurements, and
Discussion

Figure 6 measures the group delay of the tunable filte
the center of the C band. The group delay ripple is sma
than 5 ps within the23-dB bandwidth. The bandwidth
isolation, and other performance characteristics of the fi
can be tailored during fabrication to suit the application
changing the grating strength, apodization, and chirpin14

in a manner similar to the FBG.
However, unlike the FBG, the VHG is a free-space d

vice and the input beam at a nonzero incident angle s
different effective grating strength for polarization in or o
of the incident plane of the grating. This could cause h
PDL and PMD in the volume holographic filter. We me
sured the PDL and PMD of the tunable filter at three d
ferent frequencies across the tuning range, as shown in
7. Within the tuning angle of 11 to 17 deg, PDL is small
than 0.4 dB and PMD is smaller than 0.4 ps. Both PM

Fig. 5 Filter bandwidth while tuning over the C-band.

Fig. 6 Group delay measurement of the tunable filter at the center
of C-band.
2019Optical Engineering, Vol. 43 No. 9, September 2004
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and PDL increase as the filter is tuned to higher frequen
due to the increase in the incident beam angle.

There are various methods used in optical networks
improve the PDL and PMD.15 One potential solution to
minimize both PDL and PMD further is utilizing a multi
pass architecture, in which the beam is diffracted by
same or a different grating a second time after undergo
90 deg of polarization rotation. Multiple passes through
single grating can also be used to generate filters with sm
frequency spacing and high stopband isolation. One s
approach is to replace the drop collimator in Fig. 1 with
Faraday rotation mirror~FRM!. The device is constructe
as previously described, but the first diffracted drop beam
instead reflected by a FRM, which rotates the polarizat
of the light as well as reflects it back along the origin
path. The reflected beam then makes a second pass thr
the VHG and is diffracted backward along the same path
the original input light. Since the second pass is made w
light whose polarization is rotated with respect to that
the first pass, polarization-dependent effects such as P
and PDL are reduced. However, a circulator is needed
separate the output from the input, as the normal FBG.

There are also alternative double-pass configurati
achieved without using a circulator. One architecture is
use a retroreflector to reflect the drop beam backward to
grating, along a path transversely shifted from the d
beam. This beam will then diffract a second time by t
VHG, reflect off the IR mirror, and be coupled into a se
ond collimator that is parallel to the first input collimato
To compensate for PMD and PDL effects, a half-wavepl
can be placed in the beam path to exchange the in/ou
plane polarization components before making a sec
pass through the VHG.

5 Conclusion

Volume holographic grating maintains the sharp filter p
formance of a FBG while providing the addition freedo
of manipulating the signal in free space. With proper des
of an optical architecture, we demonstrate a simple sin
parameter tunable optical filter over 1510 to 1590 nm a
low insertion loss ,1 dB. By combining the mature

Fig. 7 Polarization dependent loss and polarization mode disper-
sion.
2020 Optical Engineering, Vol. 43 No. 9, September 2004
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apodization/chirping FBG technique and the flexible arc
tecture, volume holographic gratings can lead to the c
struction of more sophisticated continuous tunable filte
such as low PDL, PMD, and dispersion filters, or dispers
compensation.
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