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INTRODUCTION

There is considerable interest in developing a tun-
able continuous-wave (cw) infrared laser source for a
wide range of applications, such as high-resolution and
high-precision absorption spectroscopy, optical fre-
quency metrology, study of the terrestrial atmosphere,
analysis of atmospheric pollutants and environmental
trace gases monitoring by the spectroscopic method. In
recent years, advances in the quantum-mechanically
designed cascade structure have led to a revolutional
progress in semiconductor laser technology for the
mid-infrared ranging from 3.4 to 17 

 

μ

 

m [1]. But to date,
these attractive laser sources still require cooling to
~100 K for continuous-wave operation.

Over the last decade, there has been rapid progress
in new nonlinear optical materials phase-matchable for
the mid-infrared up to ~20 

 

μ

 

m, in novel phase-match-
ing schemes, and in laser technology: single-mode,
room temperature diode laser, diode pumped solid-
state lasers, and broadly tunable Ti : Sapphire lasers are
commercially available for the spectral region from
0.65 to 2 

 

μ

 

m. It provides new opportunities in the
development of laser sources based on nonlinear fre-
quency down-conversion. This room temperature laser-
based infrared source offers the unique advantage of
high spectral purity and wide frequency tunability in
the mid-infrared (3–20 

 

μ

 

m) as compared with semicon-
ductor lasers [2–4], which makes it not only a powerful
tool for high-resolution spectroscopy, but also a useful
alternative to the semiconductor laser-based monitor-
ing system for high sensitive and high selective detec-
tion of multicomponent trace gas at room temperature
operation in the middle infrared region.

DIFFERENCE FREQUENCY INFRARED 
SPECTROMETER

A widely tunable continuous-wave (cw) mid-infra-
red spectrometer was developed, which was aimed at
spectroscopic investigation of trace species measure-
ment by laser absorption spectroscopy [5–7]. The spec-
trometer was based on laser difference-frequency gen-
eration (DFG) in a gallium selenide (GaSe) crystal. As
effective nonlinear material suitable for frequency con-
version, it should be optically transparent to the fre-
quencies of all the interacting waves, phase matchable
with a relatively large nonlinearity and a high optical
damage threshold. GaSe, a negative uniaxial crystal
(

 

n

 

0

 

 > 

 

n

 

e

 

), is optically transparent from 0.65 to ~20 

 

μ

 

m
[8]. The nonlinear effective coefficient for type I inter-
action can be written as

. (1)

GaSe exhibits a large nonlinear coefficient (54 pm/V
vs. 13 pm/V for AgGaS

 

2

 

). Its nonlinear figure of merit
(

 

d

 

2

 

/

 

n

 

3

 

) is even almost 10 times higher than the corre-
sponding value for AgGaS

 

2

 

 [9]. The GaSe crystal is
very attractive for DFG at a long wavelength of up to
~20 

 

μ

 

m.
A schematic arrangement of the DFG-based spec-

trometer is shown in Fig. 1. The pump and signal lasers
were argon ion laser-pumped cw single-frequency Ti :
Sapphire lasers (899-29 Autoscan, Coherent Inc.),
which were tunable from 700 to 800 nm and from 800
to 900 nm, respectively. Laser polarizations were
matched to be orthogonal in order to realize type I
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Abstract

 

—The development of a continuous-wave (cw) laser difference-frequency generation (DFG) spec-
trometer is reported. A broadly tunable cw laser-based infrared source was generated from 8 to 19 

 

μ

 

m by laser
difference frequency mixing in a gallium selenide (GaSe) crystal. The spectral performance of the DFG spec-
trometer was evaluated by using the Doppler limited resolution spectrum of benzene in the 

 

ν

 

4

 

 band near
662 cm

 

–1

 

. High spectral purity and wide tunability make this novel frequency conversion-based infrared source
not only a powerful tool for spectroscopy, but also a useful alternative to a semiconductor laser-based detection
system for highly sensitive and highly selective measurement of multicomponent trace gas at room temperature
operation in the middle infrared region.
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phase matching condition. The laser beams were spa-
tially overlapped with a polarizing beamsplitter cube
and focused in a GaSe crystal to generate infrared radi-
ation at the difference frequency of the lasers by 

 

χ

 

(2)

 

nonlinear frequency conversion. The used GaSe crystal
was 

 

z

 

-cut 5 mm thick and 10 mm in diameter (EKSMA
Co.), and mounted on a rotation stage. Under type I
birefringently phase-matching interaction, the infrared
emission was continuously tunable from 8 to 19 

 

μ

 

m in
wavelength by laser wavelengths tuning associated
with the angle tuning of the crystal 

 

z

 

-axis orientation.
Figure 2 plots the experimental type I phase matching
characteristics of the GaSe at room temperature, which

gives the phase-matchable laser wavelengths and corre-
sponding crystal external angle for the infrared DFG
from 8 to 19 

 

μ

 

m. The infrared generation at a long
wavelength near 19 

 

μ

 

m was limited by the crystal
absorption edge, as shown in Fig. 3. At the short wave-
length, we could extend the spectral tuning range down
to about 6 

 

μ

 

m with crystal external angle greater than
66

 

°

 

, but this was limited by the used crystal mount and
the crystal dimension. Pumped with a total laser power
of ~500 mW, the infrared power was in the range of
0.1 

 

μ

 

W near 9 

 

μ

 

m and decreased with the cube of the
infrared wavelength. The spectral purity of the infrared
emission was ~1 MHz. The absolute accuracy and
reproducibility of the frequency measurement of the
spectrometer, determined actually by Autoscan’s wave-
length meter, are 7 

 

×

 

 10

 

–3

 

 and 2 

 

×

 

 10

 

–3

 

 cm

 

–1

 

 respec-
tively.

The infrared beam was then collimated with a para-
bolic mirror into a ~10-mm diameter beam, and
directed towards an absorption cell. The infrared light
emerging from the cell was collected by an 90

 

°

 

 off-axis
parabolic mirror and focused onto a liquid-nitrogen-
cooled HgCdTe photoconductive detector with a
1 

 

×

 

 1 mm

 

2

 

 active area.

DOPPLER-LIMITED HIGH-RESOLUTION 
SPECTROSCOPY OF BENZENE

IN THE 

 

ν

 

4

 

 BAND

The benzene molecule plays an important role in the
organic chemistry. As a heavy molecule, the spectra of
benzene (C

 

6

 

H

 

6

 

) are very dense. In order to evaluate the
spectroscopic performance of the DFG-based spec-
trometer, high-resolution spectrum of gaseous benzene
was scanned near 15 

 

μ

 

m. In this region, the absorption

 

Fig. 1.

 

 A schematic arrangement of the DFG-based laser spectrometer: A polarization rotator was used to rotate the polarization of
the pump laser by 90

 

°

 

. The orthogonally polarized laser beams were then combined in a polarizing beamsplitter cube and focused
in the crystal with an 

 

f

 

 = 350 mm lens.
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Fig. 2.

 

 Experimental type I phase matching curves of GaSe
for the infrared generation from 8 to 19 

 

μ

 

m, birefringently
phase-matched by laser wavelengths tuning and crystal
external angle tuning.
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of benzene is due to the intense 

 

ν

 

4

 

 c-type parallel infra-
red band which presents the strongest absorption in the
infrared. Benzene vapor was obtained from vaporiza-
tion of liquid benzene. A direct absorption spectrum of
~1 mbar gaseous benzene is shown in Fig. 4 (lower
trace). The spectrum was recorded by fixing the signal
laser and the crystal external angle at 12000 cm

 

–1

 

 and
~45

 

°

 

, respectively, and scanning the pump laser fre-
quency from 12662 cm

 

–1

 

 in 10 MHz steps. The absorp-
tion cell was made of stainless steel and ended with
ZnSe windows forming an optical-length of ~12-cm.
The cell was pumped out and scanned to provide zero
spectrum for normalization. This DFG spectrum was
compared to the FT-IR spectrum (upper trace in Fig. 4)
obtained with a resolution of 0.2 cm

 

–1

 

 (Perkin Elmer,
System 2000 FT-IR).

Figure 5 shows a DFG spectrum of benzene of the

 

ν

 

4

 

 P(31) branch near 662 cm

 

–1

 

, which is 

 

a

 

 ~0.15 cm

 

–1

 

blowup of the spectrum shown in Fig. 4. At a benzene
vapor pressure of ~1 mbar the experimental linewidth
was found to be ~0.0018 cm

 

–1

 

, slightly greater than the
theoretical Doppler linewidth (~0.00094 cm

 

–1

 

). With
this quasi-Doppler limited resolution, the 

 

K

 

 structure of
the 

 

ν

 

4

 

 parallel band was resolved for 

 

K

 

 

 

≥

 

 7. The inten-
sity variation with the most intense transitions occur-
ring at 

 

K

 

 = 6

 

n

 

 + 3 were clearly observed, which is so
useful for line transition assignment.

The P(31) transition was assigned using the usual
energy expressions for a symmetric top with terms up
to the quartic level [10]. Infrared frequency was
directly deduced from the difference of laser frequen-

cies measured by the internal wavemeter of the laser
autoscan system. The infrared wavenumber calibration
was experimentally checked by using the atmospheric
CO

 

2

 

 R(10) 01

 

1

 

0–00

 

0

 

0 line at reduced pressure [11]. No
additional frequency calibration etalon has been

 

Transmission, %

70

60

50

40

30

20

10

0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Wavenumber, cm

 

–1

 

FT-IR spectrum of GaSe crystal

 

Fig. 3.

 

 FT-IR transmission spectrum of GaSe crystal.

 

Observed P(31) transitions of the 
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 band of benzene
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 – 
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–1

 

)

30 7 31 7 662.0964 +0.0001

30 8 31 8 662.0988 +0.0002

30 9 31 9 662.1018 +0.0002

30 10 31 10 662.1048 +0.0001

30 11 31 11 662.1084 +0.0002

30 12 31 12 662.1122 +0.0002

30 13 31 13 662.1164 +0.0002

30 14 31 14 662.1208 +0.0001

30 15 31 15 662.1254 –0.0001

30 16 31 16 662.1308 +0.0001

30 17 31 17 662.1361 –0.0001

30 18 31 18 662.1418 –0.0002

30 19 31 19 662.1481 0.0000

30 20 31 20 662.1545 –0.0001

30 21 31 21 662.1618 +0.0004
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employed. The results are shown in the table. The jet
cooling technique should be necessary to attain sub-
Doppler resolution [12].

CONCLUSION

We reported a broadly tunable cw infrared laser
spectrometer based on the difference frequency gener-
ation in a GaSe crystal. This kind of the frequency con-
version-based spectrometer is very attractive for high-
resolution spectroscopy and the monitoring of volatile
organic compounds (VOCs) constituents in the atmo-
sphere by using high-resolution laser absorption spec-
troscopy.
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Fig. 4. Spectra of gaseous benzene in the ν4 band near 15 μm. Upper spectrum: ν4 band FT-IR spectrum, obtained from a Fourier

transform spectrometer with a resolution of 0.2 cm–1 (Perkin Elmer, System 2000 FT-IR); Lower spectrum: DFG spectrum of
P branches of the ν4 band.

Fig. 5. DFG spectrum of the P(31) transition of the ν4 band
of benzene at near Doppler-limited resolution. 
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