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Abstract: It is generally assumed that a light beam with orbital angular
momentum (OAM) per photon oflh̄, is transformed, when traversing a
Dove prism, into a light beam with OAM per photon of−lh̄. In this paper,
we show theoretically and experimentally that thisOAM transformation
rule does not apply for highly focused light beams. This result should be
taken into account when designing classical and quantum algorithms that
make use of Dove prims to manipulate the OAM of light.
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1. Introduction

Light possesses orbital angular momentum (OAM), which is associated with the amplitude and
phase of its transverse spatial profile [1]. A light beam withan azimuthal phase dependence of
the type exp(ilϕ), carries an OAM per photon oflh̄. In general, in the paraxial approximation,
light beams can be represented as superpositions of Laguerre-Gaussian (LG) beams, or alter-
natively, as superposition of spiral harmonics. The weights of the superposition determine the
corresponding angular momentum content of the light beam [2].

The OAM of light is receiving increasing attention as a resource, in classical and quantum
optics, since the OAM exists in an inherently multidimensional space. For instance, information
can be encoded into higher dimensional OAM-alphabets for its use in free space communica-
tions systems [3], and in high density optical storage in compact disks [4]. Generally speaking,
the use of the OAM of light might represent a new strategy for optical imaging [5].

In quantum optics, the OAM of single and paired photons is used as a quantum resource
that allows to increase the dimensionality of the working Hilbert space [2, 6], which can be
used to implement new quantum applications. Illustrative examples include the violation of
Bell inequalities with qutrits [7], the implementation of the quantum coin tossing protocol [8],
and the generation of a quantum state in a highly multidimensional state [9].

The Dove prism is a very well known tool in optics. It acts as animage flipper in one trans-
verse dimension, while leaving unchanged the image in the other transverse dimension. This
characteristics, which makes it very useful in certain optical instruments [10], makes the OAM
of a light beam to change. This property has turned Dove primsinto a key element in some
recent classical and quantum optics implementations that make use of the OAM of light as a
resource.

A control-NOT gate, which has recently been implemented using polarization and transverse
spatial modes [11], it makes use of a Dove prism located in oneof the arms of an interferometer,
where the spatial profile of the light beam (or photon) is properly rotated. Dove prisms are key
elements of an interferometric method for measuring the orbital angular momentum of single
photons [12], as well as of a scheme that allows the measurement of the orbital angular momen-
tum content of a superposition of LG beams [13]. Recently, another interferometric method has
been proposed for measuring the amount of spatial entanglement that exists between certain
entangled paired photons generated in parametric down conversion [14]. A scheme to generate
arbitrary coherent superpositions of OAM states in Bose-Einstein condensates makes use of
Dove prism to change the handedness of light [15].

When a light beam with a well defined OAM per photon oflh̄, i.e., with spatial shape in
cylindrical coordinates at the beam waistAin = A0 (ρ)exp(ilϕ), traverse a Dove prim, it is
generally assumed that the output beam has a well defined OAM per photon of−lh̄, i.e., with
spatial shapeAout = A0 (ρ)exp(−ilϕ)exp(−ilγ), whereγ/2 is the angle of rotation of the Dove
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prism. The time dependence of the angle of rotation, and therefore the phase shiftlγ, makes
possible the observation of the rotational frequency shiftof light beams [16]. The rotated Dove
prism can also introduce polarization changes into the light beam [17].

Generally speaking, the polarization and spatial properties of light beams can not be con-
sidered separately [18]. For instance, highly focused light beams of fixed linear polarization do
not exist [19]. Notwithstanding, within the paraxial regime, both contributions can be measured
and manipulated separately [20].

In this paper we will show theoretically and experimentallythat the OAM transformation rule
lh̄ ⇒−lh̄ is not valid for highly focused light beams, since Dove prisms inherently introduce
astigmatism, and therefore further OAM changes. Light beams with a well defined value of
the OAM per photon, after traversing the Dove prism, are transformed into a superposition of
states with well defined OAM. The violation of the rulelh̄ ⇒−lh̄, turns out to be more severe
for highly focused light beams. We will provide a quantitative study of the properties of the
Dove prism, by making use of the geometrical optics properties of the Dove prism, and we will
verify experimentally the validity of our theoretical results in a series of experiments with a
commercially available Dove prism.
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Fig. 1. Geometrical configuration of a Dove prism. (a) Lateral view (yz−plane) and (b) Top
view (xz−plane). Solid and dashed lines represent the typical path of two optical rays.

2. ABCD law for a Dove prism

In Fig. 1, we present the basic geometrical configuration of aDove prism, by showing a typical
optical ray tracing. By making use of the laws of geometricaloptics, one finds that the relation-
ship between the output position (x2,y2) and angle (ox,oy) of a ray, and the input position (x1,y1)
and angle (ix,iy) are given by (see appendix)

x2 = x1 +

[

L
n

+
h0

tanα

(

1−
1
n

)]

ix

ox = ix
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y2 = (h0− y1)−h0

(

η
n

+
1

tanα

)

iy

oy = −iy (1)

whereL is the length of the base of the Dove prism,n is the refractive index of the material,α
is the base angle, and

h0 = L

{

tan
[

α + sin−1
(cosα

n

)]

+
1

tanα

}−1

η =
h0sinα

L

[

1−
(cosα

n

)2
]−1/2

cos−2
{

α + sin−1
(cosα

n

)}

(2)

In order to derive Eqs. (1), we have made use of the paraxial approximation, so we have
only kept first order terms in the angles of the optical rays. Inspection of Eqs. (1) show that the
propagation of rays through the Dove prism is described by two decoupled ABCD matrices,
one for each transverse dimension. We can analyze ray behaviour in each transverse coordinate
separately and independently, using the appropriate ABCD matrix [21].

We have performed a series of experiments with a commercially available Dove prism (Thor-
labs) to check the validity of Eqs. (1) and (2). The Dove prismparameters areL = 63mm,
α = 45o andn = 1.51. We use a CW He-Ne laser (wavelength 633nm). The output beam of
the laser is conveniently shaped so that at the input plane ofthe Dove prism, the beam width is
w0 ≃ 560µm. The beam is directed to the Dove prism by means of two mirrors to accurately
control the angle and position of the beam at the input plane.The beam at the output plane of
the system is demagnified to fit on a CCD camera with an appropriate imaging system.
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Fig. 2. Location of the center of the light beam at the output plane. (a) Theangle in the
x-plane (ix) is changed. (b) The angle in they-plane (iy) is changed. Dots: experimental
results. Solid line: theoretical results.

Figure 2(a) shows the position of the center of the beam at theoutput plane when the input
beam, centered at (x1 = 0,y1 = 0), propagates with different angles (ix) at the input plane of
the Dove prism. Similarly, Fig. 2(b) corresponds to the caseof changing the angleiy. The
experimentally measured values agree well with the theoretical predictions as given by Eqs. (1)
and (2).

3. Ellipticity induced by a Dove prism

From the ABCD matrix derived in the previous section, it is possible to calculate the effect
of the Dove prism on the width and the waist position of an optical beam [21]. The important
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point here is that, apart from the well known image inversionin the y direction, Eqs. (1) also
show that the Dove prism modifies the beam waist position of the beam, (zx andzy, zx = zy),
differently in both transverse dimensions. The new beam waist positions (¯zx andz̄y) read

z̄x = zx +

[

L
n
−

h0

tanα

(

1−
1
n

)]

z̄y = zy +h0

[

η
n

+
1

tanα

]

(3)

The appearance of two different beam waist positions for each transverse dimension induce
astigmatism in the output beam, and therefore, changes in the OAM content of the output beam
[22]. Generally speaking, any optical device that introduces different optical path lengths for
rays propagating in different transverse planes, should produce changes in the orbital angular
momentum content of the output light beam. For the case of a Dove prism, as considered here,
the difference between ray propagation in the two transverse dimensions is only noticeable for
highly focused beam.

After traversing the Dove prism, the width of the light beam at the output plane is given by

the well known formula for LG beams ¯wx,y = w0

[

1+(z̄x,y/z0)
2
]1/2

, wherew0 is the width of

the beam at the input plane andz0 is the corresponding Rayleigh range.
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Fig. 3. Ellipticity of the output beam at the output plane, after traversing the Dove prism.
Filled circles: Experimental results with the Dove prism. Triangles: experimental results
when the Dove prism is removed. The solid and dashed lines are the theoretical results, as
explained in the text. The dashed line corresponds to the theoretical value of the ellipticity
(e = 1) when the Dove prism is removed. Inset: Filled circles:x-axis; Empty circles:y-axis.
Input beam waist:w0 ≃ 50µm.

Figure 3 shows the experimentally measured ellipticity at the output plane of an input gaus-
sian beam, after traversing the Dove prim. The beam width at the input plane is changed with a
series of lenses, but keeping the beam waist position at the input plane. For the measurement of
the beam widths in both transverse dimensions, we have used arazor-edge measurement tech-
nique, for the two orthogonal directions. For the sake of comparison, we have also measured
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the ellipticity of the output beam when the Dove prism was removed, which is also shown in
Fig. 3. The theoretical curve shown in Fig. 3 corresponds toe = (w̄x/w̄y)

2. The inset of Fig. 3
shows how the output elliptical beam rotates when the Dove prism rotates.
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(a) and (c), and with the Dove prism, (b) and (d). (a) and (b):w0 = 560µm, (c) and (d)
w0 = 50µm. All dimensions are inµm.

Figure 4 shows two typical spatial shape measurements obtained at the output plane, when
the Dove prism is present or when it is removed. The input beamis a vortex beam with winding
numberm = 2, with two different beam widths. For very large beam widths, (a) and (b), the
astigmatism induced by the Dove prism is not relevant, contrary to the case of highly focused
beams, as shown in (c) and (d).

4. OAM transformation rule of the Dove prism

The astigmatism induced by the Dove prism will transform theOAM of the output beam dif-
ferently from the expected transformationl ⇒−l. Let us consider that the input beam (at the
input plane) writesAin (ρ,ϕ) ∝ ρ l exp

(

−ρ2/w2
0

)

exp(ilϕ), which corresponds to a LG beam
with winding numberl and radial indexp = 0. The OAM of a light beam is related to the az-
imuthal indexl, while it does not change for light beams with different index p. From Eqs. (1),
the normalized beam at the output plane writes

Aout (ρ,ϕ) = N

(

x
w̄x

+ i
y

w̄y

)l

exp

(

−
x2

w̄2
x
−

y2

w̄2
y

)

exp

(

i
kx2

2R̄x
+ i

ky2

2R̄y

)

exp(−ilϕ) (4)

wherek is the wavenumber,N is the normalization factor and the wavefront radius of curvature
readsR̄x,y = z̄x,y

[

1+(z0/z̄x,y)
2
]

.

Due to the astigmatism induced by the Dove prism, the output beam is no longer a pure spiral
harmonic with winding number−l, but a superposition of spiral harmonics that can be written
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as [2]

Aout (ρ,ϕ) =
1

(2π)1/2 ∑
m

am (ρ) exp(imϕ) (5)

wheream (ρ) = 1/(2π)1/2∫ dϕAout (ρ,ϕ)exp(−imϕ). The weight of them-harmonic is given
byCm =

∫

ρdρ|am (ρ) |2. We thus obtain [23] that the weights of the OAM superposition {Cm}
that describes the light beam, after traversing the Dove prism, is given by

Cm =

(

1
2l−2l!w̄xw̄y

)

∫

ρ2l+1dρ exp

[

−ρ2

(

1
w̄2

x
+

1
w̄2

y

)]

×

∣

∣

∣

∣

∣

l

∑
k=0

(

l
k

)

i−k
(

1
w̄x

−
1

w̄y

)k( 1
w̄x

+
1

w̄y

)l−k

J(l+m)/2−k (s)

∣

∣

∣

∣

∣

2

(6)

when (l + m)/2 is an integer andCm = 0 otherwise. In the formula aboveJm is the Bessel
function of the first kind and orderm, and the parameters reads

s =
kρ2

4

(

1
R̄x

−
1
R̄y

)

+ i
ρ2

2

(

1
w̄2

x
−

1
w̄2

y

)

(7)

Figure 5(a) and (b) shows the OAM decomposition of the outputbeam for a gaussian input
beam, and Figs. 5(c) and (d) shows the corresponding OAM decomposition for al = 1 vortex
input beam. In all cases, the OAM decomposition of the outputbeam is centered at−l.

In Figs. 5(b) and (d), the OAM decomposition of the output beam shows a single line, so in
this case Dove prism transforms the OAM of the light beam froml to −l. For highly focused
light beams, such as it is the case of Figs. 5(a) and (c), the Dove prism transform a pure LG
beam into a superposition of spiral harmonics with different OAM index.

In order to quantify the validity of the rulel ⇒ −l to describe the OAM related behaviour
of the Dove prism, Fig. 6 shows the weight of the central mode,which corresponds tom = 0
for the case of an input gaussian beam, andm = −1 for the case of al = 1 input vortex beam.
Generally speaking, a Dove prism performs the OAM transformation

l ⇒{Cm} (8)

where the decompositionCm is determined by Eq. (6). For highly focused light beams, theOAM
decomposition shows many modes. For larger beam widths values, the usual transformation
l ⇒−l holds. From Fig. 6, we notice that, for a given value of the input beam width, the weight
of the central mode of the OAM superposition is smaller for the case of the input vortex beam
than for the gaussian beam.

5. Conclusions

We have demonstrated theoretically and experimentally that a highly focused light beam with a
well defined value of the OAM per photon is transformed into a OAM superposition state when
traversing a Dove prism, due to the introduction of astigmatism into the light beam propagation.

Dove prisms are being extensively used in many physical settings that make use of the OAM
of light [11, 12, 13, 14, 15]. In view of the results presentedhere, the use of Dove prisms with
highly focused beams could require the use of some compensating schemes, such as appropriate
combinations of cylindrical lenses.
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6. Appendix: Derivation of the ABCD matrix for a Dove prism

In this section we will derive Eqs. (1),(2) and (3), making use of the scheme shown in Fig. 1. In
order to do so, one follows the rays trajectories in the figure. This is done in three steps. Firstly,
we propagate the ray from the input plane to the input face of the prism(x1,y1) → (x′,y′).
Secondly, we let the ray traverse the Dove prism(x′,y′)→ (x′′,y′′), and finally, we calculate the
ray trajectory from the output face of the prism to the outputplane(x′′,y′′) → (x2,y2). The first
and last steps are straightforward free-space propagations, which in our case just means finding
the crossings in the three dimensional space of a straight line with a plane.

On the other hand, the middle step is divided into refractionfrom air to glass at the input face
of the prism, reflection of the ray at the floor of the prism, andanother refraction from glass to
air.

The final result relates the position and angle of the ray at the input plane(x1,y1; ix, iy), with
those at the output plane(x2,y2;ox,oy) in the following way

x2 = x1 +L
tan(ix)+ tan(α) tan(α + i′y) tan(i′x)

1+ tan(α) tan(α + i′y)
,

y2 = L

(

tan(α)− tan(iy)
1+ tan(α) tan(α + i′y)

)

− y1,

ox = ix, oy = −iy. (9)

In these formulas we use the refraction angles inside the crystal (i′x, i
′
y) =

(arcsin(sin(ix)/n),arcsin(sin(π/2 − α − iy)/n), which are shown in Fig. 1. Next, we
perform a Taylor expansion to first order in the angles of these equation, since we consider the
paraxial approximation regime. The result of this approximation are Eqs.(1) and (2), which we
repeat here to ease the following discussion

x2 = x1 +

[

L
n

+
h0

tanα

(

1−
1
n

)]

ix

ox = ix
(

y2−
h0

2

)

= −

(

y1−
h0

2

)

−h0

(

η
n

+
1

tanα

)

iy

oy = −iy (10)

One can note a slight variation in the formula fory2, in order to clarify the following discussion.
A few comments are now in order. First, one notes that, although in the full equations, the

output positions of a ray depend on all input angles ((ix, iy)), in the linearized equations the two
transverse dimensions are completely decoupled. This allows a simplification for the ABCD
law, which otherwise would become a larger matrix [21]. Nevertheless, this simplification is
only valid within the paraxial approximation, i.e. to first order in the incoming angles.

Secondly, Eqs.(9) show that the magnitudes of the angles arenot changed in the process.
This is due to the fact that the input and output media are the same (air). The change in sign of
the angle in the vertical direction is due to the reflection ofone ray at the floor of the prism.

Finally, we would like to mention the physical meaning of theparameterh0, which is ex-
plicitly written in Eq.(2). It can be easily checked from theequation fory2, that in the case
of incidence angle parallel to the base of the Dove prism (iy = 0), h0/2 is exactly the position
where the Dove prim has no effect over the ray (y2 = y1 = h0/2).

The set of equations (10) can be directly cast into the ABCD matrix form
(

x2

ox

)

=

(

Ax Bx

Cx Dx

)(

x1

ix

)

, (11)
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and the corresponding one for the vertical direction. As mentioned above, due to the decoupling
of the dimensions, we have one ABCD matrix for every distinctdirection.

In order to use the ABCD matrix to calculate the effect of an optical system to a Gaussian
beam, we have to introduce the complex radius of curvature [21] q = (z− z0)− iλ/(πw2

0),
wherez is the actual longitudinal position of the beam,z0 the position of the beam waist of the
beam,λ the wavelength of the light andw0 the beam width at the waist position. The beam can
have a different complex radius of curvature for each dimension (qx,qy). The transformation
through an optical system gives

q̄i =
Ai +Biqi

Ci +Diqi
, (12)

with i ∈ {x,y}, for each dimension. We can write it in this simple way, because Eqs.(10) are
decoupled for the two transversal directions.
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