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Interferometry with Squeezed States
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Generic scheme (closely related to proposal by
Holland and Burnett, 1993):

Beam
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Beam
splitter 2
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• Fock states at input ports

• Number measurements at output ports

Phase shift ∆φ

Capable of resolving phase shifts at
Heisenberg limit (∆φ ~ 1/N)

Implementation in lattice system:

State preparation =  Insulator transition

Beam-splitter =  Sudden change in lattice parameters

Phase-shift    =  Sudden change in external potential

Readout =  Interference of atoms released from lattice
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Double-well System

Left trap Right trap

H  =   -γ (aL
+ aR

 +  aR
+ aL)  - gβ/2[ (aL

+ aL)2 + (aR
+ aR)2]

Hamiltonian

tunneling mean field
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What is the many-body ground state of this system (assume
N atoms are partitioned between the two traps)?

Adiabatically
manipulate tunnel
barrier height
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Ngβ/γ = 0
(non-interacting)

|ψ 〉 ~ {(aL
+ +  aR

+)/√2}N|vac〉

Ngβ/γ = 100

For Ngβ/γ →:,                             
〉 ~ {aL

+} N/2{ aR
+}N/2|vac〉

Ground States

Assume  |ψ 〉 =  Σcn|n, N-n 〉

Left trap Right trap
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Ngβ/γ

Insulating

Squeezed
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Lattice Potential

Example solution:

Ansatz,
|ψ 〉 =  Πι |φi〉                (i indexes lattice site)

where,
|φi〉 ~ Σ exp -{(n-n0)2/σι

2} |n〉

Use variational method to find ground-state:

Vary n0, σ
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Lattice calculation 
(numerical)

Double well (exact)
30 lattice sites
~50 atoms/site (center)

Find ground state
for harmonic +
lattice potential
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Experiment

7 Er
lattice
depth

18 Er
lattice
depth

44 Er
lattice
depth

• Adiabatically (with respect to many-atom ground
state) ramp lattice intensity to form squeezed
states (200 msec).

• Switch off harmonic trap, hold for short time (2
msec) in gravitational potential (lattice beams
vertically oriented).

• Release atoms from lattice.   Observe
interference of atoms released from lattice.



Mark Kasevich  
Yale University
mark.kasevich@yale.edu

Squeezing Factor

Analyze interference patterns to extract
phase variance at each lattice site

• compare measured with modeled
signals

Insulating regime (accessed
in most recent experiments)
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Temperature Dependence

Observed dephasing is independent of
temperature of condensate.
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Non-adiabatic Lattice Step

• Suddenly raise lattice to deep level

• Hold for fixed time

• Investigate interference pattern
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Adiabatic State Manipulation

• Slowly ramp lattice up to produce
squeezed state.

• Slowly ramp lattice down to recover
coherent state.

• Compare with response to fast initial
ramp.
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Time Scale for Adiabaticity

Change ramp time to investigate transition
between adiabatic and non-adiabatic
behavior.
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• Adiabatically ramp lattice depth to prepare number

squeezed states

• Suddenly drop lattice depth  to allow tunneling

• (Drop slow compared to vibration frequency in well)

Time dependent variational estimate
for phase variance per lattice well

Experimental signature:  breathing in
interference contrast

Number
squeezed
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Lattice Dynamics
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Time-dependent Variational Calculation

Wavefunction parameterized in terms of mean
and variance of atom number and phase for
each lattice site:

Time dependent equations for variational
parameters:

where

Model allows for calculation of time evolution of
quantum state.  Valid for σφ < 1 rad.

Lattice
wavefunction:

Γ ~  ( Tunneling energy / mean field energy )
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Low lattice level is 19.7 Er

Observed State Oscillations
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Interferometry Sequence
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• Create array of Fock states

• Begin first beamsplitter (induce state
oscillation to phase squeezed states)

• Apply gravity-induced phase stamp
(suddenly turn off harmonic potential)

• End second beamsplitter

• Begin read-out sequence

• Release atoms from lattice

Interferometry sequence:



Mark Kasevich  
Yale University
mark.kasevich@yale.edu

Results

Phase stamp pulse duration (ms)
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Phase stamp
on Fock state

Fock state response:

No contrast
oscillation is
observed vs.
size of phase
stamp.

Independently
verifies state
preparation.


